Loads and Dynamics TDT Micro Burn Wire Release Mechanism

Charles Dandino

Project Introduction

- Last minute, mission critical release mechanism failure
- One path pursued to identify and correct the problem with the original mechanism
- Second path pursued to make a new mechanism and deliver it to the flight S/C in 8 weeks
- First step was negotiating acceptable risks
 - No material certs
 - Minimal official documentation; engineer discretion
 - Proto-flight development
 - Requirements solidified in <2 days (much easier later in the mission)

Trade Study – Trigger Mechanism

- Burn Wire
 - Fewest moving parts
 - Easy redundancy
 - Short Lead time
 - Works with electrical requirements
- Shape Memory Alloy
 - Used for failed design (fresh wounds)
 - Simple to actuate
 - Works within electrical requirements
 - Less experience
 - Short Lead time

- Split Nut
 - Very Reliable
 - Long Lead
 - Simple to actuate
 - Extensive flight heritage

Trade Study – Mechanical Advantage?

Trade Study – Mechanical Advantage?

© 2017 California Institute of Technology. Government sponsorship acknowledged

Proto-Flight

 Concurrently test several prototypes with the assumption that any of them can become flight. Down select through early, often testing.

Trade Study – Mechanical Advantage?

Testing showed it was not necessary: favor fewer parts

Intro

This document is intended to provide a comparison of the advantages and disadvantages of the JPL Micro-Burn Wire release mechanism and the NRL Cubesat Burn Wire Mechanism

sponsorship acknowledged

NRL Cubesat Burn Wire Mechanism

Advantages

- Further in development
- More data available on performance
- Potentially easier to handle

Disadvantages

- Larger
- 46x Heavier
- Moving parts with potential to jam
- L-D ratio is unacceptable per JPL linear slide requirements
- More parts

JPL Micro Burn Wire Mechanism

Advantages

- Smaller
- 46x Lighter
- No moving parts
- Fewer parts

Disadvantages

- Not as far in development (has not had a chance to be vibe'd)
- Less data available on performance
- Potentially more challenging to handle

How's that little thing work? Is it proven?

Assembly

017 California Institute of Technology. Government

Finished Product

sponsorship acknowledged

Nichrome Failure Current – Setup / Procedure

- 5 Nichrome wires of 0.0080" diameter, and 5 nichrome wires of 0.0100" diameter, all approximately 3-5cm length were placed in the vacuum chamber
- Pressure pumped down to less than 1x10⁻⁵ torr
- Ambient temperature
- Calibrated Agilent power supply from Loan Pool was used to increment the current by 0.01A
- Each current allowed to dwell for ~3 seconds before incrementing

Nichrome Failure Current – Let's Go!

© 2017 California Institute of Technology. Government sponsorship acknowledged

Nichrome Failure Current – Setup / Procedure

Nichrome Failure Current – Data

• Early in this testing it was noticed that the voltage increased with current (as expected) until a certain point when the voltage began to <u>decrease</u>. It was observed that the decrease in voltage corresponded with a significant drooping or even shriveling, like melting plastic wrapper, of the nichrome wire. For this reason "change current" is used to indicate that instance.

Nichrome deposited on the acryfic

Nichrome Failure Current – Data

Vacuum Nichrome Burn Wire Failure Tests

0.01A increments, 3 second wait 20VDC limit								
Pressure 1.50E-06 Torr				1.30E-06	1.30E-06 Torr, end of test pressure			
	Wire	Screw-screw	Change					
Test#	Diam (in)	resistance (ohm)	Current (A)					
1	0.0080	1.8						
2	0.0080	2.2	1.4	2				
3	0.0080	2.8	1.4	5				
4	0.0080	2.3	1.4	2 Average	StDev	95%	99.70%	
5	0.0080	2	1.3	9 1.42	0.02	1.37	1.35	
6	0.0100	1.4	1.7	2				
7	0.0100	1.7	2.0	3				
8	0.0100	1.8	2.0	4				
9	0.0100	1.6	2.0	8 Average	StDev	95%	99.70%	
10	0.0100	1.6	1.9	1.97	0.14	1.68	1.54	

Testing Summary

- Successfully demonstrated all requirements except viberation (TBD)
- 51 / 51 successful vectran line melts (ambient and vac)
- 26 / 26 successful vectran line melts in vac
- 11/11 successful full mechanism tests in vac, 3 at <(-20)°C, 3at >(+50)°C

Final Mechanism Detail

- 11 / 11 Successful tests run with the final design of
 - 0.008" diameter nichrome wire
 - 1.00A current limit
 - vacuum (<10⁻⁵ Torr)

Mechanisms set for actuation in chamber

Post-actuation

Success!!!

© 2017 California Institute of Technology. Government sponsorship acknowledged

Conclusions

- The Micro Burn Wire mechanism works well.
- It's not fast, but it's reliable
- This is among the smallest release devices / release load available
- Open to many options for further increasing the hold load

Acknowledgements

- JPL always exciting, challenging work
- ETL great chamber support and flexibility
- Kim Aaron, Chief Engineer consistent support and assistance throughout the design and test process
- Mike Schein, Chief Engineer provided the original burn wire concept and suggestions for making it work and improvement
- The Mechanisms Laboratory Immediate, free access to extensive power supplies, test equipment, load cells, optical tables, etc. which enabled very fast testing
- ISARA providing a fun and exciting challenge

Questions?

Thank you!

